metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Pancě Naumov,^a Mirjana Ristova,^a Bojan Sŏptrajanov,^a Moon-Jib Kim,^b Han-Jun Lee^b and Seik Weng Ng^c*

^aInstitute of Chemistry, Faculty of Science, 'Sv. Kiril i Metodij' University, PO Box 162, MK-1001 Skopje, Macedonia, ^bDepartment of Physics, Soonchunhyang University, PO Box 97, Asan, Chungnam 336-600, Korea, and ^cInstitute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.030 wR factor = 0.088 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. A rhombohedral polymorph of aqua(malonato)cadmium(II) hydrate

The Cd atom in the rhombohedral modification of aqua-(malonato)cadmium(II) hydrate, $[Cd(C_3H_2O_4)(H_2O)].H_2O$, shows pentagonal bipyramidal coordination. The malonate group chelates to the water-coordinated Cd atom; its two carboxyl groups also chelate adjacent Cd atoms. Received 26 October 2000 Accepted 27 November 2000 Online 8 December 2000

Comment

The malonate derivatives of divalent metals provide the framework for supramolecular crystal engineering (Li et al., 1997; Ruiz-Pérez et al., 2000; Shen et al., 2000; Zhang et al., 2000) when ligands such as 2,2'-bipyridine and 4,4'-bipyridine are used as spacers. The structural diversity of divalent metal malonates arises from the low point-group symmetry of the compounds, which leads to the formation of polymorphs. The cadmium malonates are suitable models for examining the coordination of metalloproteins in saccharide-specific lectin concanavalin A (Bailey et al., 1978) and parvalbumin (Drakenberg et al., 1978; Cave et al., 1979). The mode of coordination of the carboxyl entity in the models can be established by ¹¹³Cd NMR spectroscopy (Chung et al., 1995). The starting material, cadium malonate, exists as a monohydrate (Post & Trotter, 1974) whose Cd atom is seven-coordinate, and as a dihydrate (Chung et al., 1995), in which sixand eight-coordinated atoms are present. In the title dihydrate, (I), the Cd atom is seven-coordinate; the atom is chelated by the O atoms of two carboxyl entities, as well as by one malonate dianion through its two carboxyl ends. The seventh coordination site is occupied by a water molecule.

As shown in Fig. 2, the malonate dianion links the watercoordinated cadmium ions into a three-dimensional network structure. The coordinated water molecule is hydrogen bonded to the uncoordinated water molecule $[O \cdots O =$ 2.669 (5) Å] and also to an adjacent carboxyl O2 atom $[O \cdots O =$ 2.754 (4) Å]. The uncoordinated water molecule consolidates the crystal structure by forming hydrogen bonds to another coordinated water molecule $[O \cdots O =$ 2.289 (5) Å] and also to an adjacent carboxyl O4 atom $[O \cdots O =$ 2.867 (6) Å]. The hydrogen-bonding scheme renders all four carboxyl O atoms three-coordinate.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Mo $K\alpha$ radiation

reflections

 $\theta = 7.5 - 14.5^{\circ}$ $\mu = 3.13 \text{ mm}^{-1}$

T = 298 (2) K

 $\begin{aligned} R_{\rm int} &= 0.053\\ \theta_{\rm max} &= 25^\circ\\ h &= -6 \rightarrow 20 \end{aligned}$

 $k = -20 \rightarrow 0$

 $l = -13 \rightarrow 14$

3 standard reflections

frequency: 120 min

intensity decay: 2%

 $w = 1/[\sigma^2(F_o^2) + (0.0486P)^2]$

+ 11.6164*P*] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.95 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.91 \text{ e} \text{ Å}^{-3}$

Block, colorless $0.3 \times 0.3 \times 0.2 \text{ mm}$

Cell parameters from 25

1123 reflections with $I > 2\sigma(I)$

Figure 1

Part of the structure showing the complete coordination and displacement ellipsoids at the 50% probability level.

Figure 2

The polymeric network, omitting the uncoordinated water molecules.

Experimental

The title compound separated as crystals from a cooled filtered aqueous solution of cadmium carbonate and malonic acid (1:2 molar ratio) after one month.

Crystal data

 $\begin{bmatrix} Cd(C_3H_2O_4)(H_2O) \end{bmatrix} \cdot H_2O \\ M_r = 250.48 \\ Tetragonal, R\overline{3} \\ a = 17.0355 (9) \text{ Å} \\ c = 12.3934 (5) \text{ Å} \\ V = 3114.8 (3) \text{ Å}^3 \\ Z = 18 \\ D_x = 2.404 \text{ Mg m}^{-3} \end{bmatrix}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω - 2θ scans Absorption correction: ψ scan (North *et al.*, 1968) in the *WinGX* suite (Farrugia, 1999) $T_{min} = 0.458$, $T_{max} = 0.535$ 2010 measured reflections 1223 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.088$ S = 1.151223 reflections 91 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cd1-O1	2.280 (3)	Cd1-O3 ⁱⁱ	2.527 (3)
Cd1-O1 ⁱ	2.543 (3)	Cd1-O4 ⁱⁱ	2.323 (4)
$Cd1-O2^{i}$	2.302 (3)	Cd1–O1w	2.283 (3)
Cd1-O3	2.290 (3)		
$O1-Cd1-O1^i$	93.7 (2)	$O2^{i}-Cd1-O3$	138.6 (1)
$O1-Cd1-O2^i$	83.8 (1)	O2 ⁱ -Cd1-O3 ⁱⁱ	77.8 (1)
O1-Cd1-O3	81.9 (1)	O2 ⁱ -Cd1-O4 ⁱⁱ	127.9 (1)
O1-Cd1-O3 ⁱⁱ	105.9 (1)	$O2^i - Cd1 - O1w$	106.8 (1)
O1-Cd1-O4 ⁱⁱ	92.2 (1)	O3-Cd1-O3 ⁱⁱ	143.6 (1)
O1-Cd1-O1w	165.4 (1)	O3-Cd1-O4 ⁱⁱ	91.3 (1)
$O1^i - Cd1 - O2^i$	53.2 (1)	O3-Cd1-O1w	83.5 (1)
$O1^{i}-Cd1-O3$	89.2 (1)	O3 ⁱⁱ -Cd1-O4 ⁱⁱ	53.5 (1)
O1 ⁱ -Cd1-O3 ⁱⁱ	124.7 (1)	$O3^{ii}$ -Cd1-O1w	86.4 (1)
$O1^i - Cd1 - O4^{ii}$	174.1 (1)	$O4^{ii}$ -Cd1-O1w	89.0 (1)
$O1^i - Cd1 - O1w$	85.2 (1)		

Symmetry codes: (i) $\frac{1}{3} + x - y$, $x - \frac{1}{3}$, $\frac{2}{3} - z$; (ii) $\frac{2}{3} - y$, $x - y - \frac{2}{3}$, $\frac{1}{3} + z$.

Table 2Hydrogen-bonding geometry (Å, $^{\circ}$).

D−H···A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O1W - H1W2\cdots O2^{i} \\ O1W - H1W1\cdots O2w \\ O2W - H2W1\cdots O4^{i} \\ O2W - H2W2\cdots O1w^{ii} \end{array}$	0.86	1.91	2.753 (4)	169
	0.86	1.84	2.669 (5)	165
	0.86	2.02	2.867 (6)	170
	0.86	2.22	2.895 (5)	136

Symmetry codes: (i) $\frac{2}{3} + y$, $\frac{1}{3} - x + y$, $\frac{1}{3} - z$; (ii) x - y, x - 1, 1 - z.

The water H atoms were placed in calculated positions (Nardelli, 1999).

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CELDIM* in *CAD-4 Software* (Enraf–Nonius, 1989); data reduction: *XCAD4* (Harms, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine struc-

ture: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank Macedonian Academy of Sciences and Arts, Soonchunhyang University (grant No. 2000014), and the National Science Council for R&D, Malaysia (IRPA 09-02-03-0662), for supporting this work.

References

- Bailey, D. B., Cardin, A. D., Behnke, W. D. & Ellis, P. D. (1978). J. Am. Chem. Soc. 100, 5236–5237.
- Cave, A., Parello, J., Drakenberg, T., Thulin, E. & Lindman, B. (1979). *FEBS Lett.* **100**, 148–152.
- Chung, K. H., Hong, E., Do, Y. & Moon, C. H. (1995). J. Chem. Soc. Chem. Commun. pp. 2333–2334.
- Drakenberg, T., Lindman, B., Cave, A. & Parello, J. (1978). FEBS Lett. 92, 346–353.

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. (1997). XCAD4. University of Marburg, Germany.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Li, J., Zeng, H., Chen, J., Wang, Q. & Wu, X. (1997). J. Chem. Soc. Chem. Commun. pp. 1213–1214.
- Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Post, M. L. & Trotter, J. (1974). J. Chem. Soc. Dalton Trans. pp. 1922–1925.
- Ruiz-Pérez, C., Sanchiz, J., Hernandez Molina, M., Lloret, F. & Julve, M. (2000). Inorg. Chem. 39, 1363–1370.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shen, H.-Y., Bu, W.-M., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Wang, G.-L. (2000). Inorg. Chem. Commun. 3, 497–500.
- Zhang, Y., Li, J., Chen, J., Su, Q., Deng, W., Nishiura, M., Imamoto, T., Wu, X. & Wang, Q. (2000). *Inorg. Chem.* 39, 2330–2336.